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SUMMARY 

Vortex methods have found wide applications in various practical problems. The use of vortex methods in 
free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for 
practical computation of non-linear free surface flows produced by moving bodies. The method is a potential 
flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the 
instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated 
using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated 
by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative 
Lagrangian numerical scheme. 

The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The 
iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical 
linearized solutions. The stability of the method is also discussed. 

KEY WORDS Vortex method Free surface flows Body-wave interaction 

1. INTRODUCTION 

Vortex methods have been used extensively in modelling aerodynamic lifting bodies. In marine 
hydrodynamics a good example of the vortex method is the lifting surface/line theory for a marine 
propulsor. Vortex methods have also found wide applications in the study of separated flows and 
in turbulence simulation. A limited number of applications can also be found in the simulation of 
free surface wave problems. For the many practical applications of vortex methods see the review 
by Sarpkaya.' In turbulence modelling, vortex methods have revealed the inherent instability 
associated with large-scale coherent vortical structures. In that subject it is generally impossible 
to avoid the physical instabilities. The free surface flow problem, however, is physically stable as 
compared to the shear flow problem at high Reynolds number. For this reason it should be much 
easier to apply a vortex method to the gravity free surface wave flow, which is one of the major 
considerations of this paper. 

Traditionally, because of its complexity, the free surface wave problem was attacked by a 
linearization of the free surface boundary condition. The formulations can be conveniently 
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classified into Lagrangian or Eulerian according to the methods used to formulate the problem. 
Solution methods can be divided into integral or differential equation methods, both of which can 
be conveniently implemented numerically through either finite difference or finite element 
schemes. A review of the differential equation approaches was given by von Kerczek.' A typical 
approach of the integral equation method uses a distribution of singularities on the body's wetted 
surface and a Green function that satisfies the linearized free surface boundary condition. In that 
approach the task of finding the appropriate Green function is tedious and sometimes impossible, 
especially when the boundary condition is to be satisfied exactly on the exact location of the free 
surface. Wehausen and Laitone3 gave an excellent review on this subject. 

Recently significant progress has been made on the non-linear free surface problem. Most 
approaches used the velocity potential. Hunt4 gave a detailed description of the potential theory 
used in aerodynamics and hydrodynamics with regard to the existence and uniqueness of the 
boundary integral methods for incompressible potential flow. Longuet-Higgins and Cokelet5 
formulated the two-dimensional problem in terms of the velocity potential and its derivative and 
used the formulation to simulate two-dimensional progressing and breaking waves. Greenhow 
et aL6 formulated a non-linear free surface body-wave interaction problem based also on 
the velocity potential (see also Reference 7). When compared with experiments, the results are 
acceptable, although some difficulties were pointed out by the authors. On the other hand, in the 
application of the vortex method, Zaroodny and Greenberg' attempted a non-linear vortex sheet 
modelling of the free surface and used it to simulate a two-dimensional solitary wave at a finite 
depth. Zaloshg also used a discrete vortex method to simulate the evolution of a two-dimensional 
interface between two fluids of different densities with the effect of surface tension, though the 
results were far from perfect. Baker et a l l 0  used a different approach to the two-dimensional non- 
linear free surface problem periodic in horizontal co-ordinate x. In that approach dipoles were 
distributed on the interfaces and the evolution equations established for the complex velocity 
potential and the dipole strength. The formulation was then tested in the simulation of steady and 
unsteady two-dimensional surface and interfacial gravity waves with and without bottom 
topography as well as the resonant interaction of surface and interfacial gravity waves. The results 
were reported to be good. A similar approach was used by Telste'l to study the rise of a cylinder 
to a free surface. In a closely related application, vortex methods have been used to study the 
instabilities in a stratified fluid (see e.g. References 12 and 13). 

This paper demonstrates the applicability and some advantages and flexibilities of a vortex 
method in solving non-linear free surface problems. In this paper the problem of a two- 
dimensional body in unsteady translation is first formulated using a vortex sheet model of the free 
surface. Alternative numerical implementations are discussed. The selected algorithm is tested on 
the simple case of a two-dimensional circular cylinder in unsteady translation below the free 
surface in comparison with an approximate linearized analytical solution. 

2. FORMULATION OF PROBLEM 

2.1. Unsteady motion 

In this subsection the formulation will be developed for a two-dimensional body in unsteady 
translation below or on a free surface formed by water and air in the presence of gravity. It will be 
assumed that the flow is inviscid, incompressible and irrotational. The surface tension will be 
neglected. The body will be started from an initial position. The water is infinitely deep. The body 
can be partially or fully submerged in water while in motion. The necessary governing equations 
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Figure 1. Co-ordinate system 

to be satisfied are the following, in a frame fixed on the body (Figure 1) :  

(1) 

VCDa*”.fi=O on y=s(x),  (2 )  

p a = p W = p  on y=q(x ,  t ) ,  (3) 

v 2 ~ a . w -  - 0, 

dX 
-=VCDw on y=q(x,  t), 
dt 

q(x, O ) = q o ,  

VCDa,W(x, y, O)=V@,”d”, 

VCD=V=&(VCDa+VCDW) on y=q(x ,  L ) ,  

where the superscripts ‘a’ and ‘w’ denote air and water respectively, CD and q are the velocity 
potential and the surface elevation above the undisturbed position respectively and 
X =x;+q(x,  t ) ;  is the position vector of a point on the free surface.* 

If the free surface is replaced by a vortex sheet and the body contour by a source sheet,? and if 
the limits are taken as the field point approaches the body surface from outside and the free 
surface from both sides respectively, defining V@.” - VCDa = y.3 on y = q(x,  t )  and using the Euler 
equation in both water and air at the interface in the moving frame fixed on the body, one can 
derive 

(9) 
where 9= k x fi is the unit vector locally tangent to the interface, D/Dt = a/& + V * V is the total 
derivative following the vortex sheet (free surface) and s is the arc length on the free surface. 

* The body and the free surface elevation need not have an explicit expression such as s(s) or ~ ( x ,  I )  it only serves as a 
convenient notation. A is a unit normal pointing into the water. 
t The body contour should be represented by a vortex sheet in lifting cases. 
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Equations (8) and (9) can be combined with (3) to give 

where ~ . = ( p ~ - p ~ ) / ( p " + p ~ )  is the density ratio or Atwood number. Equation (10) is a general 
equation applicable not only to a water-air interface but also to other stratified fluids with 
arbitrary density ratio IC. For a shear interface in a uniform fluid the vortex density is conserved 
following a fluid particle, except for stretching of the vortex sheet due to the local non-uniform 
velocity field, which is represented by the third term in (10). 

In passing, it should be mentioned that equation (8) can be used for studying the evolution of a 
water surface under the action of a prescribed pressure field above the water surface, in which case 
dpw/as in the equation is known. 

Now the other limit of interest, where pw$-pa, will be explored further by letting IC= I. This 
yields 

DY DV av y a y  durn, + -+ 24 * -+ y4.- + - - + 294. j = 2 __ r - i on y = q ( x ,  t). Dt Dt as 2as  at 

Equation (1 l), applicable on the air-water interface, is to be used for updating the free surface 
vortex strength. 

Now define 

v = u,i+ v, (12) 
where v is the disturbance velocity due to the free surface and body contour singularities; if we use 
the total derivative following a water particle below the vortex sheet, D"/Dt =a/& + V" * V, where 
V" = V + y4/2, then equation (1 1) leads to a simpler form given by 

D"y D"v 
--+24~--+2gf.~=o. Dt Dt 

This simple equation has clear physical meaning. It states that the time rate of change of vortex 
density on the sheet is due to the non-linear particle acceleration, which is to be balanced by a 
restoring term due to gravity. If the above equation is used to update the vortex density on the 
sheet, it can be seen that the vortex density is first generated by a disturbance represented in a 
non-uniform velocity field. On initial generation of vortices in the near field the vortices are 
convected downstream, causing surface elevation. The surface elevation, however, cannot in- 
crease arbitrarily but is limited by the restoring term due to gravity. The interplay of the three 
terms in the above equation accounts fully for the wave mechanics on the free surface. If the above 
equation is written in a Eulerian frame, the change in vortex density can be explained as due to 
the time rate of change of the velocity field plus the distortion produced by the non-uniformity of 
the velocity field. For time stepping, however, the Lagrangian frame seems to be the more 
convenient implementation. 

Our working equations can be summarized as follows: 

y k  x VGds on s(x)+, (13) 
Y = V ( X *  1) 

(14) 

f aVGds + a. 
Y = N X )  

y k  x VGds on y=q(x, t )  

f 0 o= u,(t)T.s+-+a-PV 
2 

v= U,(t)T+ oVGds+PVj  
Y = S(X) Y = rl(x, t )  
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D"y D"v 
---+2?.-+2gf-j=0 Dt Dt on y = q ( x ,  t ) - ,  

q ( x ,  O ) = V ( x ,  y, O ) = O  at t=O,  

where 4 =k x a, s is the arc length along q ( x ,  t )  or s ( x )  and 

Here the rest position has been used for simplicity as an initial condition. 
It can be seen from the above development that the essential feature of the current formulation 

is the use of the vortex density instead of the velocity potential in the study of the free surface 
body-wave interaction problem. This formulation gives clear physical meaning but at the same 
time introduces two time derivatives into the same equation (15). In a general three-dimensional 
problem, since the vortex density is a vector on the free surface, the computation procedure will 
possibly be more involved than the velocity potential formulation. As mentioned in Section 1 ,  
some simulations for stratified fluids in the literature have indicated the unstable nature of the 
interfacial waves. Thus it is interesting to see if the current vortex sheet modelling can avoid 
instabilities and thus give more easily obtainable and useful results. 

Although equation (14) can be substituted into equation (15) to yield an integral equation for 
the vortex density y, which can be solved simultaneously with equation (13) for 0, the advantage 
of doing that is not obvious. First, when the time derivative is taken, there will be an extra term 
due to the convection of the vortex sheet, making the coupled equations more complicated than 
they look now. Secondly, the time derivative will make the kernels of the integrals one order more 
singular than they appear now, so that some special technique is needed to treat the integrals. 
Thirdly, the integral equations will be simultaneous for both the source density on the body and 
the vortex density on the free surface. When numerically implemented, the size of the matrix 
corresponding to the integral equations will be ( N +  M )  x ( N  + M )  if N source elements on the 
body and M vortex elements on the free surface are used. That will make it computationally more 
expensive at each time step than if only the source density is solved from the integral equations 
whereas the vortex density is obtained from the evolution equations. In this paper an iterative 
calculation procedure is adopted and will be discussed in more detail in the following sections. 

For the steady state (a/& =0) the free surface velocity is tangential, V =  V,4, since q ( x ,  t )  is a 
streamline. Equation (1 5 )  then becomes 

a as [ (v, +;7] + 2g4 .& 0. 

Equation (1 1) can also be derived from the Lagrangian derivative of the circulation r at the 
interface of two fluids of different densities by using the Euler equations in the two fluids and the 
equal pressure condition at the interfa~e.'~ It can be shown that 

41f = lab - 2~ [ $+ y as a ? J  ( t ) + !$] - Z ds 
Dt 
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and 
D 

apply on the sheet in the fixed co-ordinate system, where I C = ( ~ ~  -p1) / (p2  + p l )  and p1 and p2 are 
the densities of the two fluids. From the above it is easily seen that only when p 1 = p 2  is 
DT/Dt=O. If p1 # p z ,  circulation is obviously not conserved along the streakline at the position 
of the sheet. If p1 =0, which approximates the air-water interface, IC= 1. When dotted into-$ and 
written in the moving frame, the above equation becomes identical to the one previously derived. 
The two different derivations indicate two different approaches to the same problem: one can use 
either the vortex density or the circulation in the dynamic equation but the latter approach is 
applicable to two-dimensional problems only. 

The working equations (13)-( 17) may be non-dimensionalized with 

V ’ = L V ,  U’,(t’)= U,(t)/U,(co), V‘=V/U,(oo), 

r’ = r/L, Fr= u,(@/J(gL), t’ = t U, (a)/L, 
(o’, Y’)=(o, Y) /um(a ) ,  S I  = s/L, (x’ ,  Y ’ )  = (x /L ,  Y/L), 

where L is the body characteristic length and U,(co)= U,(t+oo). 
After the singularity densities have been obtained for the new time step, the pressure on the 

body can be found from Bernoulli‘s equation in moving co-ordinates (see Reference 15, p. 89). The 
expressions are omitted to save space. 

2.2. Steady state structure of far-jield downstream vortex sheet 

sionalization gives 
For steady flow, a p t  = O  and V =  Vs4 on y = q ( x ) .  Integration of (18) in s and non-dimen- 

An important restriction on the free surface elevation implies from this relation: 

g‘<+ Fr’. (20) 

This equation states that the maximum achievable wave elevation is restricted by the free stream 
velocity or by the free stream energy carried by the fluid particles. Note that the linearized 
Bernoulli equation does not impose an upper bound on the wave elevation. 

2.2.1. Stability considerations. Equation (14) can be dotted into i and substituted into 
equation (19) to yield an equation for the vortex density y’ in the steady state: 

y ’= - , , . ;+2J(1-s)-2i .5~,=~,  a‘VrG’ds‘-29-PV y’ = 4‘ y’kxV‘G’ds’on y ’ = f ( x ‘ ,  t’). 

For simplicity consider the far-field approximation of equation (21) in which the contributions 
from the source distribution (far away) and vortex distribution (mostly perpendicular to the sheet, 
assuming small wave elevation) can be effectively neglected. Further assume 

(21) 
5 
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where u‘ and v‘  are the components of the non-dimensional disturbance velocity vector and 
lim E = 0. Then a linearization can be made as follows: 

- J [ l+ (a r f / ax r )q  2 +2(1-$) 

x-2---i. ?I’ 
Fr 

This linearization shows that y r  is positive whenever qr is negative and vice versa. This is different 
from the situation arising from a disturbed vortex sheet in a uniform flow of uniform density, in 
which case it can be shown that the sheet is unconditionally unstable (the Kelvin-Helmholtz 
instability). The above is more analogous to the discrete vortex street analysed by von Karman 
many years ago. A von Karman vortex street has an alternating sign characteristic similar to that 
observed here. The von Karman vortex street is stable if it has a certain structure (eg. the ratio of 
the vertical distance to the horizontal distance between point vortices being 0.281). Similarly we 
may expect the vortex sheet in our problem to have a stable structure which dictates the 
wavelength of the far-field wave downstream. The stability should be neutral in the same sense as 
for a von Karman vortex street, in which too large a disturbance to the structure (e.g. numerical 
errors) could destroy the stability. 

Consider the interface of two fluids of different densities moving with speed U/2 in opposite 
directions one on top of the other. It can be shown (see Reference 16, pp. 373-374 and 461-462) 
that the characteristic solution of the amplitude of the interface is 

where cr=2x/A, I is the wavelength of the disturbance, Fr,= U/,/(gA) is the Froude number 
based on the disturbance wavelength and K is the density ratio. From this expression it can be 
seen that when KGO, which corresponds to the heavy fluid above, the solution is always unstable. 
When 0 < IC < 1, the solution is unstable for large Fr,  or small wavelength 1 as compared to U. 
When IC = 1, the stability is neutral in the sense that a slight change in the density could introduce 
instability. Numerical errors could mimic the slight density difference and could therefore 
adversely affect calculations. This is probably the reason why some numerical disturbances were 
found in some of the early free surface simulations. 

The above linearized stability analysis result is from a solution using separation of variables. 
The conclusion of the neutral stability can be conveniently used here to study the structure of 
the far-field vortex sheet downstream. 

For the steady state the linearized equation for y r  far downstream has been given previously by 
(22) as 

2v’ -- 
Fr” 

where all variables are non-dimensionalized. 
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For simplicity we ignore all upstream influence and consider now a sinusoidal wave form 
without the presence of the body, i.e. 

q’ = t&, sin (a5 + 6). (24) 
Here x, y, < and q are the non-dimensional variables, 7’ is the wave elevation and q is an 
integration variable. The disturbance velocity on the vortex sheet can be written as 

Assume the wave elevation to be small so that the disturbance velocity can be approximately 
calculated on the x-axis: 

Substitute (23) and (24) into (25) to give 

- ?b = j __ cos( ax + 6). 
Fr2 

The non-dimensionalized total velocity on the sheet is 

V’ =F+ v’. 

The direction of the linearized velocity is given by 

?b tana, = tan[arg(V’)] =? cos(ax+6). 
Fr 

Now this direction of the velocity is compared with the direction of the wave elevation tangent 
gwen by 

tan a2 = 9 = a?; cos (ax + 8 1. 
dx 

To have the steady state wave form in the moving frame we take the neutral stability case given by 

I1 tan a, I I  = II tan at II 
or 

1 
Fr2 ‘ 

a=--- 

Thus the far-field downstream wave is given by 

The wave number a obtained from the above linearized stability analysis, (26), is therefore 
identical to that of the linearized solution, although it was arrived at from considerations of a 
linearization of the non-linear vortex sheet model. 
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2.2.2. Frequency analysis. In the above stability analysis the far-field wave was assumed 
sinusoidal. This assumption can now be verified by the following simple frequency analysis on the 
linearized equations. Again the following assumptions are made to linearize the equations: 

i-T=coso!- 1, 

where u and u are the components of the disturbance velocity vector and E is a small parameter. 
With the above assumptions the steady state form of the dynamic boundary condition (1 5 )  can be 
linearized to give 

The induced velocity on the x-axis due to the disturbance of a body and a distribution of vortices 
on the x-axis is 

.t. 
Ox= 1 - vb = ubx, 

where vb is the velocity due to the disturbance of the body alone. The steady state linearized 
kinematic boundary condition takes the familiar form 

all 
0, = u, -. 

ax 

The above four equations can be combined to give 

ax 

Let 

Define the Fourier transforms 
I f m  m 

?(a) = 2- J y(x)e -iox dx, y(o)= l  f(x)e-ioxdx. 
2n 2x 

Then equation (28) can be written as 

iu, C O - ~  y(o)+f(o) eioxdo=O, 
S r m [  ( 1 

from which we obtain 

This equation shows that y(x)  has a dominant frequency component given by o = g/Ui ,  which, if 
non-dimensionalized, is 1/Fr2. This verifies our previous assumption on the far-field sinusoidal 
wave form and the linearized stability analysis. Our previous conclusion about the neutral 
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stability of the vortex sheet in this particular case has also been confirmed. It is also obvious from 
the above analysis that the linearized far-field equations cannot be used to obtain a unique far- 
field wave height. In fact the far-field wave height has to be determined from the analysis of the 
near field, where the disturbance of the body plays a dominating role. This is consistent with the 
physical process of the problem. 

It should be noted that if U ,  is changed into c, the celerity of a progressing wave train, the 
above analysis is also valid for a progressing sinusoidal wave without the presence of a body, in a 
frame moving at the wave celerity, in which the wave form is steady. In that case, since w is the 
wave number, the above results yield a dispersion relation 

2n 9 
1 CZ' 

a = - - -  

i.e. 

which agrees with the classical linearized Airy wave theory. 

3. NUMERICAL ALGORITHM FOR UNSTEADY FLOW 

Equations (13)-(17) are used to solve for the unknowns B on s(x), V and y on q(x, t)  and the free 
surface elevation ~ ( x ,  t )  itself. Owing to the fact that D"y/Dt and Dwv/Dt occur in the same 
equation in (15), the solution procedure involves an iteration, i.e. first a trial iteration for one of 
the two total derivatives, say D"v/Dt, then a time stepping for D"ypt. 

The solution procedure is summarized as follows: 

1. For a given U,(t) start from rest or some other prescribed initial condition. 
2. Discretize the body contour and the free surface. Assume that (the discrete values of) 6' on 

s(x), V k  and y k  on ~ ( x ,  t )  and q(x, t)  at current time t or time step k are available. 
3. For time step k + 1 move (the control points of) the vortex sheet with Vk to the new position 

according to equation (16). 
4. Find the velocity Vk+'  at the new position (of the control points of the free surface vortex 

elements) due to y k  and ok using equation (14). For preparation of step 5 let yk+' = y k  as a 
first approximation. 

5. Solve for (discretized) ak+ ' on the body contour using equation (13) with yk+' known on the 
free surface. 

6. Solve for Vk+' due to ak+' on the body and yk+' on the free surface using equation (14). 
7. Use Vk+'  and V k  to approximate DWv/Dt in equation (15) and check for convergence. If 

8. Solve for yk+' on the free surface from equation (15); go to step 5. 
9. Redistribute the sheet to make the sheet vortex elements equally spaced again. (The 

redistribution algorithm will be described later.) 
10. Interpolate y k +  ' onto the new sheet. This involves a two-step interpolation: first, right after 

convection, an interpolation from the control points to the end points of the redistributed 
panels; secondly, from the end points of panels to the new panel midpoints. Parabolic 
interpolation is used here although higher-order interpolation is also easy to implement. 

11. Find V"' at the new sheet position due to okf l  and yk+'  at the new sheet position. Note 
that these are the corrected values for the previous approximation, step 6. Go back to step 3 
and proceed to the next time step. 

convergence is reached, go to step 9; otherwise, go to step 8. 
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In the above iteration, steps 3-8 form an outer loop for one time step for the Lagrangian time 
derivative D"y/Dt in (15), while steps 5-8 form an inner iteration loop for D"v/Dt in the same 
equation. Only when the convergence for Dwv/Dt is satisfied does the iteration go to the outer 
loop for the next time step. Analysis of the simulation results shows that step 5 in the inner 
iteration may be skipped after the first inner iteration in most cases since the change in source 
densities is usually small. For the time steps after the first a reasonable starting point for D"v/Dt 
is the backward difference obtained from the current and previous time steps. In step 9 the reason 
for the redistribution is mainly to effectively avoid concentration of element control points in 
certain portions of the sheet, as would be caused by the non-uniform velocity field. For a two- 
dimensional floating body, in particular, the redistribution can avoid spatial resolution being 
lower and lower with increasing time on the downstream side of the free surface very close to the 
body contour owing to the presence of a nearby stagnation point. (Sometimes, however, the non- 
uniform distribution of control points may be desirable, e.g. in the study of breaking waves where 
a body is not present.) Another advantage of the redistribution is its stabilizing effect on local 
small-scale disturbances which were found in some numerical simulations of free surface gravity 
waves (see e.g. References 5, 11 and 17). There is, however, a trade-off for the redistribution of the 
sheet. With the redistribution step, higher-order finite difference methods become expensive to 
implement. Since redistribution of the control points on the sheet involves a numerical inter- 
polation, the order of interpolation must be consistent with the order of time stepping if a higher- 
order scheme is to be used. The exact effect on the accuracy of the procedure is to be further 
investigated. There is an alternative way to implement the above algorithm, i.e. by using a fixed 
grid and interpolating everything onto the grid, then interpolating quantities back from the grid 
when each is needed at control points of the elements.18 That approach can be expected to 
achieve possibly a higher accuracy at the expense of generating undesired grid effects. The exact 
amount of the trade-off is also to be explored further in the future. 

In the current implementation of the above algorithm, uniform strength source and vortex 
elements are used. Theoretically there is a discontinuity in the velocity across a vortex sheet. To 
avoid numerical difficulties, a thin shear layer is constructed to represent this discontinuity so that 
the velocity will never be singular anywhere in the domain, not even at the two ends of a vortex 
panel where a logarithmic singularity is normally expected. The velocity in the thin shear layer is 
assumed to be a linear distribution, continuous from the outer velocity field. Both equations (15) 
and (16) are discretized by a first-order forward difference Euler scheme in a Lagrangian frame, 
i.e. the time derivative is the one that follows the fluid particles on the sheet. 

The redistribution procedure is as follows (shown in Figure 2). Assume a, b, c, d,  . . . are the 
middle points of elements after one time step. Assume that A, B, C, D, . . . are equally spaced 
points on the sheet with spacing between any two successive points equal to 1, say. If one starts 
from point a, then one first checks labl: iflabl>l, get point B on ab such that lABl = I ;  otherwise, 
get B on bc such that IAB( = 1. The same procedure is followed for C, D, . . . . Since A, B, C, D, . . . 

a /  1 I 
A 

Figure 2. Redistribution of control points on sheet in one time step 
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are on the lines ab, bc, . . . , the interpolation of vortex density from a, b, c, d,  . . . is straightfor- 
ward. A, B, C, D, . . . can be taken as end points of the new elements. Then the middle points are 
obtained by averaging and the vortex densities on the middle points are parabolically inter- 
polated from those of the end points. 

To save computation cost, the vortex density far away may be lumped into equivalent point 
vortices and several point vortices can be combined into an equivalent one with equivalent 
circulation and location as used by Deffenbaugh and M a r ~ h a l l ' ~  and Porthouse and Lewis,2o 
which is also similar to the subvortex technique used by Maskew.21 Due to the non-linearity of 
the induced velocity field, the equivalence is only approximate and not uniform with location. 
However, that approximation does offer a convenient way to cut down substantially the 
computational cost for high resolution associated with short waves. 

4. RESULTS AND DISCUSSION: UNSTEADY TRANSLATION OF 
A SUBMERGED CIRCULAR CYLINDER 

The numerical solution procedure in Section 3.1 is tested for a circular cylinder in unsteady 
translation below a water-air free surface. In the current simulations the iteration for dv/dt as 
outlined in the previous section converges relatively fast. For a convergence criterion (based on 
the sum of the relative error of the velocities at all control points of free surface panels) of 001, it 
takes less than five iterations for all cases. The simulation results are shown in Figures 3-1 1. The 
free surface elevation is plotted in the moving frame. The centre of the cylinder is located at x = 0 
and y =  -f; wherefis the submergence of the cylinder. It is started from the still position with a 
uniform acceleration until it reaches a steady speed (which is equivalent to a time-varying free 
stream starting from rest with a uniform acceleration in the moving frame). The Froude number is 
based on the ultimately achieved steady free stream speed (or the maximum translational speed of 

0 '25 ]  FR=O.8, SUBMG=l.5, DT=0.025,  ELE LENGTHzO.1, DU/DT= 1 FOR T < l  

1 
FREE SURFACE ELEVATION 

-0.25 

--- T I Y E =  I .o  
- TIYE= 2.0 

0'25]FR=0.8, SUBMG=l.5, DT=0.025,  E L €  L E N G T H 4 . 1 ,  DU/DT=10 FOR T < l  

I FREE SURFACE ELEVATION 
-0.25 

TIYE= 1.0 
T I Y E =  2.0  

--- 
- 

Figure 3. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left; 
Froude number 0.8, submergence 1.5, different initial accelerations 
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the cylinder) and the body diameter. Different submergences, Froude numbers and accelerations 
are tested (the submergence being the distance from the centre of the cylinder to the undisturbed 
free surface). The quantities shown in the figures are non-dimensional. In the numerical calcu- 
lations the body, with a radius of 0.5, is divided into 36 panels with constant source density on 

0.25j FR=O.  8 ,  SUBMG=l .50,  DT=O. 025, ELE LENGTH=O. l ,  DU/DT=lO FOR T < l  
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0.00 
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- - - T I M E =  6 . 0  

-0.50 -T IME= 8 . 0  
FREE SURFACE E L EVAT I ON 
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TI ME=10.0 
F R E E  SURFACE ELEVATION T I M E = 1 7 . 5  

___ -_  

-0.50 - T I  MEz22.5  

Figure 4. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left; 
Froude number 0.8, submergence 1 5 ,  initial acceleration 10 
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FR=O -8, SUBMG=2,00, DT=O. 025, ELE LENGTH=O. l ,  DU/DT=lO FOR T < l  

each panel. The free surface is modelled with constant density vortex panels, each of which is 0.1 
in length. The time step size is chosen to be 0.025. The infinite free surface is cut at a distance of 9 
upstream and 18 downstream for numerical computations. (The truncation boundary should be 
compatible with the period of simulation so that no significant errors will be generated from the 
boundary.) 

- - - - - - - 
T I  ME=2.50 ---- 

FR=0 .8 ,  SUBMG=2.00, OT=0.025 ,  ELE LENGTH=O. 1 ,  DU/DT=10 FOR T<1 

-0 .25  J T 1 ME=O .50 
T I ME=l .OO 
T I ME=1.50  

- - - - - - - 

FREE SURFACE E L E V A T I O N  

_----- 

--- - -  T I ME= 4 . 0  
- - - T I M E =  6 . 0  
- T I M E =  8 .0  FREE SURFACE ELEVATION 

"7 FR=0.8 ,  SUBMG=2.00, JkQ.025, 
. ,*--. ELE LENGTH=O. l ,  DU/DT=lO fOR T<1 

- -  
--/ ----- T IME= lO.O 

T I M E z 1 7 . 5  
- T I M E = 2 2 . 5  . ,  FREE SURFACE ELEVATION 

-0.25 .__* 

Figure 5. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left; 
Froude number 0.8, submergence 2.0, initial acceleration 10 
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Figure 3 shows the free surface evolution for a steady free stream Froude number equal to 0.8, 
a submergence equal to 1.5 and initial uniform accelerations of 1.0 and 10.0. Only the results at 
the early time steps are shown since the difference in later time steps due to the different initial 
acceleration of the body is not significant. Figure 4 gives a more complete surface evolution for a 

0*25 \  FR=l . O ,  SUBMG=l.50, OT=0.025, ELE tENGTH=O. 1 ,  DU/DT=10 FOR T < l  

-0.25 1 ---- T I ME=t ,  00 
T I ME=1.50 FREE SURFACE ELEVATION 

’.”] 
FR=l .O ,  SUBMG=l, 50, DT=O. 025, ELE LENGTH=O.t, DU/DT=10 FOR T<1 

T IME=2 .50  
-0.25 FREE SURFACE ELEVATION T I ME=3.00 

FR=l  . O ,  SUBMG=1.50, OT=0 .025 ,  ELE LENGTH=O.l,  DU/DT=10 FOR T < l  

-0q - - - - -T IME= 4.0 
1-A’ FREE SURFACE ELEVATION - - -T IME= 6 . 0  

-0.50 -TIME= 8.0 

FR=1 .O, SUBMG=1.50, DT=O.O ELE LENGTH=O.l, DU/DT=10 FOR T<1 

FREE SURFACE ELEVATION --- T lME=17 .5  
- T I M E z 2 5 . 0  

Figure 6. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left; 
Froude number 19, submergence 1.5, initial acceleration 10 
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Figure 7. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left, 
as compared with linearized approximate solutions by Na~elock;~* Froude number 0.8, submergence 2.0, initial 

acceleration 10 
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Froude number equal to 0.8, a submergence of 1.5 and an initial uniform acceleration of 10 until 
steady speed is achieved. Figures 5 and 6 show the evolution of the free surface (in the body-fixed 
frame) for different combinations of Froude numbers and submergences. Figure 7 shows a 
comparison of the unsteady free surface elevation with an approximate linear solution given by 
Havelock. 

The following features can be observed from the simulation results. With increasing sub- 
mergence the free surface disturbance gets smaller. For the smaller Froude number (Figures 4 and 
5) the first trough is closer to the body. It is deep in contrast to the low upstream surface elevation. 
For the higher Froude number (Figure 6) the motion of the body generates higher surface 
elevations upstream and above the body. This larger disturbance is attributed to a larger amount 
of input free stream energy corresponding to the higher Froude number. Another obvious feature 
is the greater range of the influence of the body, e.g. the deep trough behind the body goes farther 
downstream as the Froude number increases. Also, the first crest downstream is observed at a 
later time as the Froude number increases, which is expected since the downstream wavelength is 
proportional to the square of the Froude number, as shown in the steady motion analysis. Aside 
from the amplitude, the shape of the near-field non-linear surface elevation is similar for different 
submergences. When the initial uniform acceleration is changed from dU,/dt= 1 to dU,/dt= 10 
in Figure 3 (corresponding more to an impulsive start), the difference in the shape of the surface 
elevation is actually minimal, whereas a fast-moving wave due to initial disturbance is more 
obvious (Figure 5, third frame for t = 4 4 )  and the steady state will be reached sooner. 

An interesting aspect to be noticed (in the third frames of Figures 4-6) is that the simulation 
shows the dispersion due to the initial start of the cylinder. On the downstream side, small- 
amplitude waves are seen to travel faster than the steady state wave as predicted by the linearized 
theory.22 In all cases a faster-moving wave, which is due to the initial set-up of the disturbed near 
field and the acceleration effect, can be observed to travel downstream after t=4. This wave 
travels faster than the group velocity, which is equal to half the translational velocity of the 
cylinder. Actually, the wave crest is a superposition of many small-amplitude waves with 
wavelengths longer than the steady state wavelength. On approaching steady flow in the near 
field, this superposition of long waves will be expected to have travelled far downstream and have 
disappeared from the near field. At t = 8 this wave has already travelled out of the frame shown in 
Figures 4-6. Then the steady dowstream wave which travels at the group velocity will be 
gradually established. This dispersion has also been observed in the upstream direction (although 
not shown in the figures), especially when the Froude number is small. In the comparison with the 
linear approximate solution given by Havelock, the speed of travel of the faster wave due to the 
initial disturbance is predicted very well by the current simulation (see Figure 7). In that figure 
there is a discontinuity in surface elevation of the linear solution because Havelock formulated 
the problem for a cylinder started suddenly from the rest position and then made to move at 
constant speed. The unrealistic formulation introduces a shock at t=O and the shock is then 
preserved and propagated at the group velocity. Except for this subtle difference between the 
linear solution and the current simulation, the overall agreement is acceptable, especially with 
regard to the small fast wave due to the initial disturbance. (Note that in Havelock’s linear 
solution the body boundary condition was not imposed.) The above observations are in 
qualitative agreement with a summary given by Havelock,22 which, based on the linearized 
theory, stated that the surface elevation at any time is made up of three parts: (i) the local 
disturbance travelling with the cylinder, (ii) a regular train of waves behind the cylinder extending 
from x = 0 to x =$ U ,  in the moving frame and (iii) a disturbance which spreads out in both 
directions and diminishes in magnitude as time progresses. In the figures mentioned above it can 
be seen easily that the first wavelength downstream approaches asymptotically the steady state 



1306 L. CHEN A N D  W. S. VORUS 

wavelength ( 1/Fr2 non-dimensionalized) as time increases. Before passing, it should be mentioned 
that the early time history of the surface elevation is also in qualitative agreement with the limited 
results of a non-linear simulation by Teles da Silva and Peregrine,23 even though their results 
were not complete enough for a detailed quantitative comparison. Baker et al l7  also presented 
some limited results of a numerical simulation of a circular cylinder started impulsively from rest 
and reported that wave breaking was observed in their numerical experiment. The same 
parameters were tested with the current numerical simulation procedure. No wave breaking was 
observed. 

Figures 8 and 9 show the wave resistance coefficient as a function of time for a submergence 
equal to 1.5 and for Froude numbers of 0.8 and 1.0. As a comparison the resistance curves given 

FR=O. 8, SUBMG=t. 5 

---- HAVELOCK UNSTEADY 

HAVELOCK STEADY 

0.00’. . . . . . . . .  . . . . . . . . .  1 . . . . . .  . . . . . . . . .  , . . .  
Of0 5;O 1d.o 1 i . o  2d.0 

Figure 8. Resistance coefficient versus non-dimensional time for a submerged circular cylinder in unsteady translation to 
the left; Froude number 0.8, submergence 1.5, initial acceleration 10 

F R = l .  0, SUBMG=l.5 

---__- 

---- HAVELOCK UNSTEADY 

-- HAVELOCK STEAOY 

3gure 9. Resistance coefficient versus non-dimensional time for a submerged circular cylinder in unsteady translation to 
the left; Froude number 1-0, submergence 1.5, initial acceleration 10 
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by Havelock’s linearized approximate solution” are also plotted. As can be seen, the agreement is 
generally very good, especially for the variation of the curves as a function of time. Specifically, 
Havelock’s results show an oscillation of the resistance about the steady state value with a period 
of oscillation approximately equal to four times the steady wavelength. That behaviour of the 
resistance has been simulated approximately for about one period of oscillation as shown in the 
figures. The agreement for Froude numbers equal to 0-8 and 1.0 and a submergence of 2.0 is 
similarly good but the results are omitted to save some space. 

In Figure 10 the cylinder was first started from rest with a uniform acceleration of 1.0 until the 
steady speed was reached. The speed was then kept constant until a non-dimensional time equal 
to 5-0 (which corresponds to a distance of five times the diameter of the cylinder travelled by the 
cylinder in the fixed inertial frame) and then reduced with a constant deceleration of - 1.0 until 

FR.0.1, SUBUkI SO, D1=0.025, ELE LENCTH=O.l, DU/DI= 1 FOR 14, -I FOR 5<1<6 

- - - - T I M E =  5.0 
- -T IME= 6.0 

FREE SURFACE ELEVATION -TIYE= 7.0 

FR=O.l, SUBMG4.50, DT=0.025, ELE LENGTH=O.l, DU/DT= I FOR T<l, -1 FOR 5<1<6 
0 .2  

0 . 1  

0.0 

-0.1 ----TIWE= 9.0 

-TIYE=12.0 
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-0.3 
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FREE SURFACE ELEVATION 
-0 3 3 

Figure 10. Evolution of free surface elevation due to a submerged circular cylinder in unsteady translation to the left; 
Froude number 0 8 ,  submergence 1.5, varying acceleration 
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Figure 11 Resistance coefficient versus non-dimensional time for a submerged circular cylinder in unsteady translation to 
the left; Froude number 0.8, submergence 1.5, varying acceleration 

the cylinder came to a complete stop when the translational speed reached zero. The surface 
elevation shows an interesting process of the downstream wave travelling upstream and gradually 
overtaking the body and then diminishing in both directions. In the body-fixed frame (the centre 
of) the cylinder is still located at (0, - 1.5). The resistance curve for this case (Figure 11) shows 
positive resistance at first and then negative resistance due to deceleration and finally a gradual 
return to zero. The large value of resistance during acceleration and deceleration is obviously due 
to the added mass effect. 

5. CONCLUSIONS 

A vortex method for the free surface wave problem has been formulated and numerically 
implemented to simulate the two-dimensional non-linear body-wave interaction problem. The 
formulation offers another view to the physical process of the free surface wave problem. It uses 
the vortex density instead of the velocity potential as a time-stepping variable and uses an 
iteration scheme on the dynamic boundary equation on the sheet. Numerical simulations have 
demonstrated the applicability of this vortex method to the practical free surface problem. The 
stability of such a vortex sheet modelling has also been investigated. It has been shown that a 
vortex sheet as used to represent a free surface is neutrally stable and that the condition of neutral 
stability can be used in a linearization of the vortex sheet model to recover its far-field structure as 
predicted by classical linearized potential theories. Because of the stabilizing effect of the 
redistribution of the free surface vortices, small-scale instabilities reported by some other 
investigators were not found with the current method. The current method is particularly suitable 
for studying non-linear unsteady interactions such as the body-wave interaction and 
body-wake-wave interaction problems. If an appropriate Kutta condition is used, the method 
can be easily adopted to simulate the flow past a lifting foil near the free surface, as has been 
studied by Salvesen and von K e r c ~ e k ~ ~  with both a finite difference method and model tests. It can 
also be easily extended to three dimensions. In three-dimensional applications, however, the 
scalar vortex density will be replaced by a vector vortex density on the sheet (free surface), making 
it more difficult to implement numerically. The current method offers certain desired flexibility in 
dealing with floating bodies without too much difficulty (the simulation results will be presented 
separately). The method is capable of dealing with several different problems in marine engineer- 
ing, such as resistance, motion, sloshing, etc. (though not simulated here). Due to the discretiz- 
ation resolution, the method may be expensive for use in cases where the wavelength is very small 
as compared with the wave height. In that case one may consider a far-field approximation in 
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which vortex elements are lumped into equivalent vortices. As compared with the formulation 
based on the velocity potential, the current formulation can be regarded as a differential form 
(versus the integral form based on the velocity potential) of the dynamic equation on the free 
surface. This differential form offers certain advantages and disadvantages. It is easy to effect local 
treatments without affecting global results (e.g. in the treatment near an intersection of the body 
surface with the free surface), whereas the integral form of the equation tends to introduce 
cumulative effects near singular portions of the boundary of interest. The differential form of the 
equation obtains the field velocity directly instead of requiring an extra step of numerical 
differentiation. However, to get the pressure on the body, a numerical integration is required. One 
disadvantage is that the dynamic equation on the free surface is based on the slope of the free 
surface and not on the actual free surface elevation. Thus it is difficult to control the surface 
elevation as strictly governed by the gravitational restoring force; sometimes the mean water 
surface may be siightly off from the undisturbed position owing to accumulated numerical errors 
in a Lagrangian time-marching simulation. 

The significance of the current work can be seen in the following aspects. First, it demonstrated 
the applicability and flexibility of vortex sheet modelling in the non-linear free surface flow 
problem. Secondly, it provides another non-linear analysis tool which may be useful in certain 
applications, e.g. in studying the loading on an offshore structure in large waves. Thirdly, it 
identified some advantages and disadvantages of an easy numerical approach to the study of 
wave-body and wave-wake interaction problems. It is hoped that numerical simulations using 
vortex method will find more and more applications in free surface problems of marine 
applications. 
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